volumes of the species in these phases. In obtaining this expression, we have assumed that the partition functions for the rotational and internal degrees of freedom of the species are the same in both phases so that the term $R \mathrm{~d}\left(T \ln q_{\mathrm{B}}\right) /$ $\mathrm{d} T$ cancels when taking the difference.

Under hypothetical standard state conditions of unit concentrations in both phases, $\Delta s(\alpha \vec{\beta})$ becomes the standard molar entropy of transfer $\Delta s_{c}{ }^{0}(\alpha \rightarrow \beta)$ (the subscript c denotes standard states based on concentration) and the term $-R \ln \left(c_{\beta} / c_{\alpha}\right)$ equals zero. Thus $\Delta s_{\mathrm{c}}{ }^{0}(\alpha \rightarrow \beta)$ and Δs^{\prime} are identical.

References and Notes

(1) H. S. Frank and M. W. Evans, J. Chem. Phys., 13, 507 (1945). (2) W. Kauzmann, Adv. Protein Chem., 14, 1 (1959).
(3) The constraint of nonrotation is Imposed for later convenience in a motecular interpretation of contributions to the entropy change. The entropy change would be the same If the transferred molecules were allowed to rotate freely in both phases. It is assumed (see the Appendix) that the rotational and vibrational partitlon functions of the freely rotating molecules are the same In the gas and liquid phases.
(4) S. J. Yosim and B. B. Owens, J. Chem. Phys., 39, 2222 (1963).
(5) F. H. Stillinger, J. Solution Chem., 2, 141 (1973).
(6) N. F. Carnahan and K. E. Starling, J. Chem. Phys., 51, 635 (1969).
(7) E. Wilhelm and R. Battino, J. Chem. Phys., 55, 4012 (1971).
(8) H. Reiss, H. L. Frisch, E. Helfand, and J. L. Lebowitz, J. Chem. Phys., 32, 119 (1960).
(9) G. Némethy and H. A. Scheraga, J. Chem. Phys., 36, 3401 (1962).
(10) C. Tanford, "The Hydrophobic Effect", Wiley, New York, N. Y., 1973.
(11) R. W. Gurney, '"lonic Processes in Solution'", McGraw-Hill, New York, N.Y., 1953, Sections 45 and 90.
(12) R. A. Pierotti, J. Phys. Chem., 67, 1840 (1963).
(13) R. A. Pierotti, J. Phys. Chem., 68, 281 (1965).
(14) A. Ben-Naim and H. L. Friedman, J. Phys. Chem., 71, 448 (1967).
(15) E. Wilhelm, J. Chem. Phys., 58, 3558 (1973).
(16) E. Wilhelm and R. Battino, J. Chem. Phys., 58, 3561 (1973).

Structure and Chemistry of Bis(cyclopentadienyl)-ML ${ }_{n}$ Complexes

Joseph W. Lauher and Roald Hoffmann*
Contribution from the Department of Chemistry and Materials Science Center, Cornell University, Ithaca, New York 14853. Received July 7, 1975

Abstract

A construction of the molecular orbitals of a bent bis $\left(\eta^{5}\right.$-cyclopentadienyl) M fragment, $\mathrm{Cp}_{2} \mathrm{M}, \mathrm{M}=\mathrm{a}$ transition metal, serves as a starting point for a general account of the electronic structure of $\mathrm{Cp}_{2} \mathrm{ML}_{n}$ molecules, $n=1-3$. The following problems are analyzed: the geometry of $\mathrm{Cp}_{2} \mathrm{ML}_{n}$ as a function of the d electron configuration; bonding with π acceptor and donor ligands, emphasizing orbital interactions with conformational consequences such as olefin and carbene orientation and dithiolene bending; distortions of the $\mathrm{Cp}_{2} \mathrm{M}$ moiety; insertion reactions of coordinated olefins; carbonyl insertion reactions; oxidative coupling; allyl and tetrahydroborate complexes; triscyclopentadienyl complexes.

The remarkably rich chemistry of bent bis (π-cyclopentadienyl) transition metal complexes ${ }^{1}$ is the focus of this study. We proceed to formulate a model for the electronic structure of such molecules, and relate that model to the various known complex types, and the known structures. The eventual goal is an understanding of the chemistry of these molecules.

We begin by considering the valence orbitals of a bent bis(cyclopentadienyl) transition metal fragment. This is followed by a consideration of the interactions of such a fragment with additional ligands with various bonding capabilities.

The $\operatorname{Bis}\left(\pi\right.$-cyclopentadienyl) Metal, $\mathbf{C p}_{2} \mathbf{M}$, Fragment

Normal bis(π-cyclopentadienyl) [bis $\left(\eta^{5}\right.$-cyclopentadienyl), to be abbreviated throughout this paper as Cp_{2}] transition metal complexes such as ferrocene are highly symmetric molecules with parallel cyclopentadiene rings (1).

Their symmetry is $D_{5 h}$ if the two rings are eclipsed, or $D_{5 d}$ if the rings are staggered. In bent bis(π-cyclopentadienyl) transition metal complexes the rings are not parallel, that is the angle between the normals to the planes of the cyclo-
pentadienyl ligands is less than 180°, and there are from one to three additional ligands bound to the metal. 2 shows a schematic $\mathrm{Cp}_{2} \mathrm{ML}_{3}$ structure, for which $\mathrm{Cp}_{2} \mathrm{NbH}_{3}$ is a real example. A bent $\mathrm{Cp}_{2} \mathrm{M}$ fragment has $C_{2 v}$ symmetry if the Cp ligands have an eclipsed geometry, and only C_{s} symmetry if the rings are staggered.

The bonding in the normal metallocenes has been the subject of numerous theoretical and experimental papers ${ }^{2}$ and will be discussed here only briefly. In a $D_{s d}$ geometry the π orbitals of two parallel $\mathrm{C}_{5} \mathrm{H}_{5}-$ ligands yield three sets of approximately degenerate orbitals: a low-lying filled pair of $a_{1 g}$ and $a_{2 u}$ symmetry, a set of filled orbitals, $e_{1 g}$ and $e_{1 u}$, and a high-lying empty set of antibonding orbitals of symmetry $e_{2 g}$ and $e_{2 u}$. These interact with the orbitals of the metal as shown in Figure 1, which is a schematic interaction diagram of a normal $\mathrm{Cp}_{2} \mathrm{M}$ complex. There is a strong interaction with the metal s and p orbitals and also a strong bonding interaction with the $\mathrm{e}_{1 \mathrm{~g}}\left(\mathrm{~d}_{x z}, \mathrm{~d}_{y z}\right)$ set. The remaining three d orbitals of the metal, the $\mathrm{a}_{1 \mathrm{~g}}\left(\mathrm{~d}_{z^{2}}\right)$ and the $\mathrm{e}_{2 \mathrm{~g}}\left(\mathrm{~d}_{x^{2}-y^{2}}, \mathrm{~d}_{x y}\right)$ set, remain essentially nonbonding. Thus the d-level splitting is $\mathrm{e}_{2 \mathrm{~g}} \leqslant \mathrm{a}_{1 \mathrm{~g}}<\mathrm{e}_{1 \mathrm{~g}}{ }^{*}$ or $\left(\mathrm{d}_{x^{2}-y^{2}}, \mathrm{~d}_{x y}\right) \leqslant$ $\left(\mathrm{d}_{z} 2\right)<\left(\mathrm{d}_{x z}, \mathrm{~d}_{y z}\right)$.

Ferrocene is by far the most stable of the metallocenes, which is not surprising, because it has the ideal number of electrons for $\mathrm{Cp}_{2} \mathrm{M}$ complexes. Considering each $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$ligand as a six-electron donor, together with the six d electrons of $\mathrm{Fe}(\mathrm{II})$, one achieves an 18 -electron configuration by filling precisely the nonbonding $e_{2 g}$ and $\mathrm{a}_{1 \mathrm{~g}}$ levels. Cobaltocene, a $\mathrm{d}^{7}-19$ electron complex, and nickelocene, a $\mathrm{d}^{8}-$ 20 electron complex, each has an excess number of elec-

Figure 1. Interaction diagram for a $D_{s d}$ metallocene. The frontier orbitals are in the box.
trons which go into the higher lying $\mathrm{e}_{1 \mathrm{~g}} *\left(\mathrm{~d}_{x z}, \mathrm{~d}_{y z}\right)$ orbitals. Their chemistry reflects this since both molecules are easily oxidized. ${ }^{4.5}$ At the other extreme complexes such as vanadocene ($\mathrm{d}^{3}-15$ electrons) or chromocene ($\mathrm{d}^{4}-16$ electrons) are electron deficient, having fewer than 6 d electrons. In these two cases the three nonbonding orbitals are only partially filled.

One way the electron-deficient complexes can achieve the desired 18 -electron configuration is to add additional ligands, which can contribute additional electrons. When additional ligands coordinate to the metal, the $\mathrm{C}_{5} \mathrm{H}_{5}-$ ligands bend back. To understand the way in which the additional ligands bind we wish to examine the frontier orbitals of a bent $\mathrm{Cp}_{2} \mathrm{M}$ fragment. This was accomplished by means of an extended Hückel calculation on a model $\mathrm{Cp}_{2} \mathrm{Ti}, 3$. Computational details are given in the Appendix.

3
We wish to study the variation of the energy of the $\mathrm{Cp}_{2} \mathrm{Ti}$ orbitals as a function of θ, the angle between the normals to the Cp rings. In the motion which lowers θ from 180° the molecular symmetry changes from $D_{5 h}$ or $D_{5 d}$ to $C_{2 v}$ or C_{s}. To make maximum use of symmetry we bend from the eclipsed $D_{5 h}$ geometry, though we will occasionally refer to the original "unbent" $\mathrm{Cp}_{2} \mathrm{M}$ levels in terms of the more familiar $D_{5 d}$ symmetry labels. Note also that we have redefined the coordinate system (and the d levels that go with it) as shown in 3 , with z along the twofold rotation axis. The energy of the frontier orbitals as a function of θ is shown in Figure 2.

The basic trend noted in the figure is that the orbitals descended from the $e_{1 g} *$ are stabilized with bending and those descended from $\mathrm{a}_{1 \mathrm{~g}}$ and $\mathrm{e}_{2 \mathrm{~g}}$ are destabilized. For the lower orbitals, $1 \mathrm{a}_{1}, \mathrm{~b}_{2}, 2 \mathrm{a}_{1}$, this trend is the result of increased σ antibonding as one departs from the $\theta=180^{\circ}$ geometry. The effect is especially noticeable for the $a_{1 g}-2 a_{1}$, which was initially nonbonding by virtue of the cyclopentadienyl

Flgure 2. $\mathrm{Cp}_{2} \mathrm{M}$ orbitals as a function of the bending angle θ. Bending is from an eclipsed $D_{s d}$ form, but the labels at left are given for both $D_{s d}$ and $D_{5 h}$ geometries.
ligand component of that orbital lying approximately in the nodal plane of the d_{z}. Another contribution to the steep rise in energy of $2 a_{1}$ with decreasing θ is its interaction with 1a a_{1}. In $D_{5 d}$ or $D_{5 h}$ these orbitals were of different symmetry. In $C_{2 v}$ they mix, and that mixing will be important in the sequel. As a consequence of the mixing, they repel each other. This increases the upward slope of the $2 a_{1}$ and actually keeps the $1 a_{1}$ approximately constant in energy. The $\mathrm{e}_{1 \mathrm{~g}} *$ set splits, yielding the $\mathrm{a}_{2} *$ and $\mathrm{b}_{1} *$ orbitals which occur at lower energies than did the $e_{1 g} *$ set. These two orbitals have been stabilized partly because of a decrease in the overlap of the metal d's with the filled ligand orbitals (and thus less of an antibonding interaction), but more importantly in the $C_{2 v}$ geometry the $\mathrm{d}_{x y}$ and $\mathrm{d}_{x z}$ orbitals are now of proper symmetry to interact with two of the empty antibonding orbitals of the ligands. This is a net stabilizing effect and lowers the energy of these orbitals.

The composition of these frontier orbitals is of some importance in assessing their bonding capability. Accordingly Table I shows the electron distribution in the five orbitals for a typical $\theta=136^{\circ}$, and Figure 3 illustrates the computed shapes of the three lowest orbitals, $1 a_{1}, b_{2}$, and $2 a_{1}$. The molecules of interest to us carry four or fewer d electrons, and so it is these three orbitals which will play a prime role in coordinating further ligands.

Our picture of the three low-lying frontier orbitals is very similar to that reported by Brintzinger and Bartell ${ }^{6 a}$ for the same system. All three orbitals have significant extent in the $y z$ plane. The b_{2} orbital is chiefly $\mathrm{d}_{y z}$ in character. The two a_{1} orbitals each contain some contribution from the s and p_{z} orbitals in addition to $\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$ and $\mathrm{d}_{z^{2}}$ contributions. The $1 a_{1}$ orbital is directed strongly along the y axis. The orbital can be described as similar to a $\mathrm{d}_{y^{2}}$ orbital. Note again that the orbitals are defined with respect to the coordinate system shown in 3 . Orbital 2a, is the highest of the three orbitals and is hybridized nicely along the z axis away from the $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$ligands. The importance of these three orbitals has been emphasized by other authors who have considered the molecular orbitals of the bent $\mathrm{Cp}_{2} \mathrm{M}$ fragment. ${ }^{6-11}$ Different workers have constructed differing hybrids of these orbitals, occasionally leading to seemingly contradictory re-

Table I. Electron Distribution in $\mathrm{Cp}_{2} \mathrm{Ti}$ Frontier Orbitals, $\theta=136^{\circ}$

	Composition, \%	
Orbital	Cp $_{2}$ ligands	Metal a
a_{2}	69	$31 x y$
$\mathrm{~b}_{1}$	57	$43 x z$
$2 \mathrm{a}_{1}$	21	$33 z^{2}, 27 x^{2}-y^{2}, 11 \mathrm{~s}, 8 z$
$\mathrm{~b}_{2}$	34	$64 y z, 2 y$
$1 \mathrm{a}_{1}$	18	$51 x^{2}-y^{2}, 30 z^{2}, 1 \mathrm{~s}$

${ }^{a}$ Metal orbitals are defined with respect to the coordinate system in 3.
sults, but all have noted the presence of three valence molecular orbitals lying in the $y z$ plane available for bonding with additional ligands.

A beautiful series of investigations utilizing crystallography, electron paramagnetic resonance, and photoelectron spectroscopy by Green, ${ }^{9}$ Green, ${ }^{9,11}$ Prout, ${ }^{9}$ Dahl ${ }^{10}$ and their coworkers has secured for us an understanding of the orbital structure of $\mathrm{Cp}_{2} \mathrm{ML}_{n}$ compounds. The experimental studies basically have confirmed the Alcock model ${ }^{8}$ as extended by Green, Green, and Prout. ${ }^{9}$ We will refer to the experimental evidence as we discuss each molecular type. In the present context, though the $\mathrm{Cp}_{2} \mathrm{M}$ fragment is not an observable molecule, the orbital structure which we derive is consistent with the experimental information gleaned from the above cited studies. Our construction of these orbitals is not to be considered novel, but has been given in some detail as it forms the starting point for our attack on the structure and chemistry of these molecules.

Interactions with σ Bonding Ligands

The simplest examples of bent $\mathrm{M}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ complexes are monohydrides of the type $\mathrm{Cp}_{2} \mathrm{MH}$ in which the metal atom has two $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$ligands and one hydride ligand. The hydride ligand is the simplest type of ligand to consider since it can only bond in a σ fashion. Examples of this type of complex are $\mathrm{Cp}_{2} \mathrm{ReH}^{12}$ and $\mathrm{Cp}_{2} \mathrm{FeH}^{+} .{ }^{4}$ The most symmetrical and presumably sterically most favorable structure for a $\mathrm{Cp}_{2} \mathrm{MH}$ molecule is one in which the H^{-}ligand is located on the z axis, 4. In this geometry the H^{-}ligand overlaps

Figure 3. Contour diagram, in the $y z$ plane, of the three important $\mathrm{Cp}_{2} \mathrm{M}$ orbitals, computed at $\theta=136^{\circ}$. From top to bottom: $2 a_{1}, b_{2}$, la a_{1}. Solid line $=$ positive and dashed line $=$ negative contour of the wave function. The contours are at intervals of 0.02 .
very well with the fragment orbital $2 a_{1}$, overlaps somewhat with $1 a_{1}$, and not at all with the b_{2} orbital. We thus have a strong bonding interaction between the $2 \mathrm{a}_{1}$ orbital and the σ orbital of the H^{-}ligand. The b_{1} orbital is unaffected and the $1 a_{1}$ orbital is slightly destabilized. The b_{2} and l_{1} orbitals can accommodate four electrons, so d^{4} complexes of this type should be favored, as exemplified by $\mathrm{Cp}_{2} \mathrm{ReH}$ and $\mathrm{Cp}_{2} \mathrm{FeH}^{+}$.

The above analysis assumed the most symmetrical structure, one which has the H^{-}ligand along the z axis. At this geometry there is excellent overlap with the $2 a_{1}$ orbital, but this orbital is the highest in energy of the three available valence orbitals. One might expect that a different geometry, 5 , in which the H^{-}is off the twofold axis but still in the $y z$

5

Figure 4. Bottom: total energy computed for $\mathrm{Cp}_{2} \mathrm{TiH}^{+}$as a function of α. Top; variation in energy of the two low-lying empty orbitals of $\mathrm{Cp}_{2} \mathrm{TiH}^{+}$as a function of α. Energy scale markings are 0.2 eV apart.
plane, having good overlap with $1 a_{1}$ and/or b_{2}, both closer in energy to the donor orbital of H^{-}than $2 a_{1}$, could lead to greater stabilization than in the symmetrical position.

We have performed a calculation for the mythical d^{0} complex $\mathrm{Cp}_{2} \mathrm{TiH}^{+}$(Ti-H $1.60 \AA$), varying the angle α from 0 to 90°. Figure 4 plots the change in the total energy vs. the angle α. Also shown are the energies of the two nonbonding orbitals which are now both of a^{\prime} symmetry since the molecular symmetry has been reduced to C_{s}. For a d^{0} complex the energy minimum is calculated to come at about 65°. At this angle overlap is reasonably good with all three orbitals, and we have the best possible bonding interaction. If we have d electrons, they must go into the a^{\prime} orbitals. The lower a^{\prime} orbital has an energy minimum at about 35°, thus a d^{1}, d^{3}, or low-spin d^{2} complex would also be expected to be stable with $\alpha>0^{\circ}$. The higher a' orbital increases sharply in energy with increasing $\alpha . \mathrm{Cp}_{2} \mathrm{MH}$ complexes which are d^{4} or high-spin d^{2} would tend to have the symmetrical structure as previously assumed.

The only hydride complexes of the type $\mathrm{Cp}_{2} \mathrm{MH}$ which have definitely been characterized are d^{4} complexes, as exemplified by $\mathrm{Cp}_{2} \mathrm{ReH}$ and $\mathrm{Cp}_{2} \mathrm{FeH}^{+}$. Examples of other similar complexes include high-spin d^{2} complexes such as $\mathrm{Cp}_{2} \mathrm{VCl}^{13}$ which would also be expected to have a symmetrical structure. A number of d^{1} titanium complexes, $\mathrm{Cp}_{2} \mathrm{TiR}\left(\mathrm{R}=\right.$ aryl or alkyl), are known. ${ }^{14}$ These complexes are predicted to have an unsymmetrical structure with the R group off the axis. With very large R groups, steric repulsions between the R group and the $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$ligands may force the molecule into the symmetrical and sterically more favorable conformation.

With two σ bonding ligands two of the three low-lying orbitals of the bent $\mathrm{Cp}_{2} \mathrm{M}$ fragment will be used. There are a great number of complexes of this type including the simplest dihydrides, $\mathrm{Cp}_{2} \mathrm{MoH}_{2}$ and $\mathrm{Cp}_{2} \mathrm{ReH}_{2}{ }^{+}$, but there are also molecules with a variety of ligands including halides
and alkyl groups. ${ }^{4}$ The molecular structures of about 20 of these complexes have been determined. ${ }^{15}$ They all generally have the same geometry, 6 , in which the most interesting

6
variable is the angle φ between the two X ligands. The angle φ seems to depend primarily on the number of delectrons the metal possesses. This result can easily be explained by an examination of the interaction of the fragment molecular orbitals with two σ donor ligands. The two ligands will interact with the b_{2} orbital and some combination of the two a_{1} orbitals. This will result in a MO scheme as shown in 7.

7

The composition and energy of the resultant nonbonding a_{1} orbital is quite sensitive to the angle φ, as noted in another molecular orbital study. ${ }^{10 \mathrm{~b}} \mathrm{~A}$ calculation was performed on the model compound $\mathrm{Cp}_{2} \mathrm{TiH}_{2}\left(\theta=142^{\circ} ; \mathrm{Ti}-\mathrm{H}, 1.60 \AA\right.$; other parameters as before). Figure 5 plots the variation of the total energy of the molecule and of the empty nonbonding a_{l} orbital vs. the angle φ. In this d^{0} complex the a_{l} orbital is empty and there is a very shallow minimum with φ $\approx 110^{\circ}$. The energy of the a_{1} orbital has a sharper minimum at $\varphi=75^{\circ}$. By combining the two curves we thus find a $\varphi \approx 110^{\circ}$ minimum for a d° complex, $\varphi \approx 85^{\circ}$ for d^{1}, and $\varphi \approx 78^{\circ}$ for a d^{2} molecule. At 78° the hydride ligands lie approximately in the nodes of the $1 a_{1}$ orbital (see Figure 3), and thus the resultant nonbonding a_{1} orbital is primarily derived from orbital $1 a_{1}$. At the greater angles there is reasonably good overlap with both a_{1} fragment orbitals, and the resultant nonbonding orbital is consequently at higher energies. In short the angle φ decreases as we add d electrons.

Structures of the $\mathrm{Cp}_{2} \mathrm{MX}_{2}$ complexes have been summarized by Prout and co-workers, ${ }^{15}$ who also present a qualitative explanation for the geometries which is similar to our description. They report that the angles experimentally determined for d° complexes are in the range $94-97^{\circ}$; d^{1}, $85-88^{\circ} ; \mathrm{d}^{2}, 76-82^{\circ}$. The trend is in agreement with what we see in our model dihydride calculations. A molecule that can be compared directly is a d^{2} system, $\mathrm{Cp}_{2} \mathrm{MoD}_{2}$, for which a neutron diffraction study yields a DMoD angle of $83.2^{\circ} .^{15}$

That the nonbonding electron in d^{1} complexes resides in an a_{1} orbital made up mainly of $d_{y} 2$ with a small admixture of $\mathrm{d}_{x^{2}-z^{2}}$ has been clearly demonstrated in a lovely single crystal EPR study of $\mathrm{Cp}_{2} \mathrm{VS}_{5}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{VCl}_{2}$ by Petersen and Dahl. ${ }^{10 a}$ A molecular orbital and photoelectron spectroscopic study by these authors and Lichtenberger and Fenske ${ }^{10 b}$ of these and related $\mathrm{Cp}_{2} \mathrm{TiL}_{2}$ complexes is in excellent agreement with the EPR results. Our calculations give much the same shape of the a_{1} orbital.

There are relatively few examples of bent $\mathrm{Cp}_{2} \mathrm{M}$ complexes with three additional ligands, $\mathrm{Cp}_{2} \mathrm{MX}_{3},{ }^{1,4} 8$. All ex-

8
amples are of necessity d^{0} since all three valence orbitals of the fragment are used to bond the three σ ligands. The best examples of this type of complex are the trihydrides, $\mathrm{Cp}_{2} \mathrm{TaH}_{3}$ for example. All three hydrides lie in the $y z$ plane. The angle γ between the two outer hydride ligands will be larger than the similar angle in the dihydride case considered previously. This will be due to the necessity of achieving good orbital overlap with the $1 a_{1}$ orbital, as well as the resolving of the steric requirements of the H ligands. In a model calculation on $\mathrm{Cp}_{2} \mathrm{TiH}_{3}-(\mathrm{Ti}-\mathrm{H}=1.60 \AA, \theta=$ 142°) we calculate an energy minimum at $\gamma=129^{\circ}$. A recent crystallographic analysis of $\mathrm{Cp}_{2} \mathrm{NbH}_{3}$ finds $\gamma=122$ $(5)^{\circ}$ and a central $\mathrm{Nb}-\mathrm{H}$ bond somewhat longer than the outer ones. ${ }^{16}$

The reader should note that the qualitative theoretical analysis presented here has to a significant degree been anticipated in the very nice work of Green, Jackson, and Higginson. ${ }^{11}$ In their photoelectron studies these authors demonstrate most clearly the presence of two nonbonding orbitals with ionization potentials between 6 and 7 eV for $\mathrm{Cp}_{2} \mathrm{MX}$ compounds, one nonbonding MO for $\mathrm{Cp}_{2} \mathrm{MX}_{2}$, and none for $\mathrm{Cp}_{2} \mathrm{MH}_{3}$. In addition to the previously cited MO calculations for $\mathrm{Cp}_{2} \mathrm{ML}_{2}$ species by Petersen, Lichtenberger, Fenske, and Dahl ${ }^{10 b}$ we mention here other calculations by Chien, ${ }^{17 a}$ Bakalik and Hayes, ${ }^{17 \mathrm{~b}}$ and Stewart and Porte. ${ }^{17 \mathrm{c}}$

Bonding with π-Acceptor Ligands. Carbon Monoxide and Dinitrogen

Up to this point we have considered only ligands which interact with the metal primarily through σ-donor orbitals. There are, however, bent $\mathrm{Cp}_{2} \mathrm{M}$ complexes with carbon monoxide or dinitrogen as additional ligands. These two ligands are π acceptors and can form π bonds with the metal. Consider a model $\mathrm{Cp}_{2} \mathrm{MoCO}, 9$. The molecular geometry can be idealized as $C_{2 v}$. The a $\mathrm{a}_{1} \sigma$-donor orbital of the CO ligand interacts in a bonding way with metal fragment orbital $2 \mathrm{a}_{1}$ to form a strong σ bond, as shown in the interaction diagram 9. The two CO π^{*} ligand orbitals which can accept electron density from appropriate metal orbitals are of symmetry b_{2} and b_{1}. The $b_{2} \pi^{*}$ orbital lies in the $y z$ plane interacting strongly with the fragment b_{2} orbital. The fragment l_{1} orbital is affected only slightly. The remaining CO π^{*} orbital of b_{1} symmetry is stabilized somewhat by the higher, empty, b_{1} orbital of the $\mathrm{Cp}_{2} \mathrm{M}$ fragment. This stabilization of an unoccupied orbital is unimportant in the $\mathrm{Cp}_{2} \mathrm{MoCO}$ case under discussion, but will become significant in the sequel. The molybdenum CO complex is d^{4}, having both the nonbonding a_{1} orbital and the π^{*} stabilized b_{2} orbital filled.

Figure 5. Bottom: total energy computed for CpTiH_{2} as a function of φ. Top: variation in energy of the low-lying empty orbital of $\mathrm{Cp}_{2} \mathrm{TiH}_{2}$ as a function of φ. Energy scale markings are 0.2 eV apart.

$C \equiv 0$

9

These orbitals are clearly seen in the photoelectron spectrum of the molecule, an analysis of which ${ }^{11}$ contains an interaction diagram very similar to our 9. The orbitals of $\mathrm{Cp}_{2} \mathrm{MCO}$ have been examined by Brintzinger, Lohr, and Wong. ${ }^{6 b}$
In the case of N_{2} one could think about the alternatives of "end on" (10) and "edge on" (11) coordination. The bonding in the former would be expected to be quite similar

Figure 6. Interaction diagram for "end on" (left) and "edge on" (right) $\mathrm{Cp}_{2} \mathrm{TiN}_{2}$.

10

11
to that described for the monocarbonyl complexes. The N_{2} complexes presumably should be less stable, since the N_{2} should not be as good as a σ donor nor a π acceptor as CO.

The "edge on" geometry has not yet been observed, ${ }^{18}$ so it is interesting to consider the theoretical conditions which might make this coordination possible. The optimum electronic configuration turns out to be d^{2}. Figure 6 compares interaction diagrams for "end on" and "edge on" N_{2} coordination in a model $\mathrm{Cp}_{2} \mathrm{TiN}_{2}$. The π^{*} orbitals of the "edge on' complex are of symmetries a_{2} and b_{2}, while the π 's are of symmetries a_{1} and b_{1}. There is a σ donation from a combination of the $a_{1} \pi$ orbital and the highest lying $\mathrm{N}_{2} \sigma$ orbital. The strength of this combined σ donation is somewhat less than that found in the "end on" isomer. The $b_{2} \pi^{*}$ orbital stabilizes the fragment b_{2} orbital. In the "end on" isomer the stabilization of the b_{2} orbital by π^{*} was offset somewhat by a destabilization due to the $b_{2} \pi$ orbital. In the "edge on" isomer the π and π^{*} orbitals are of different symmetries and there is no destabilization. The overall energies of the two isomers thus appear to be similar, for a d^{2} case.

Quite apart from the specific case of $\mathrm{Cp}_{2} \mathrm{TiN}_{2}$ one may conclude in general that if "edge on" N_{2} complexes are to be found they should be looked for in d^{2} systems. The normal "end on" isomer has two π^{*} orbitals which can accept electrons from filled metal orbitals. The "edge on" isomer has only one π-bonding acceptor orbital; the other π^{*} can only form a δ bond. Most N_{2} complexes are with metals which have at least four d electrons, favoring the "end on" isomer. In $\mathrm{Cp}_{2} \mathrm{TiN}_{2}$, or a nother d^{2} system, only one pair of d electrons is available for back donation-the main advantage of the "end on" isomer is removed. This d configuration will not guarantee the existence of "edge on" bonding, but will provide an opportunity for it.

In addition to the monocarbonyl complexes there is a d^{2} dicarbonyl complex, $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CO})_{2}$ (12). The two carbonyl ligands will form two σ bonds using metal fragment orbitals $2 a_{1}$ and b_{2}. The $1 a_{1}$ orbital is now of the proper symmetry to be well stabilized by a combination of π^{*} orbitals of both

12
carbonyls. This is shown in $\mathbf{1 2}$. In $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CO})_{2}$ this stabilized a_{1} orbital is occupied. ${ }^{19 a}$ Remarkably a dicarbonyl with two more electrons exists, $\mathrm{Cp}_{2} \mathrm{~W}(\mathrm{CO})_{2} .{ }^{196}$ We will return to a discussion of this molecule later.

An interesting compound recently investigated by Bercaw is $\left(\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Zr}\right)_{2}\left(\mathrm{~N}_{2}\right)_{3},{ }^{18 \mathrm{~b}}$ which has the structure shown below. This falls then into the general category of d^{2}

$\mathrm{Cp}_{2} \mathrm{MX}_{2}$ structures at each end, with the additional feature of a bridging N_{2} group. An interesting aspect of the solid state structure of the molecule ${ }^{18 \mathrm{~b}}$ is that the dihedral angle $\mathrm{N}_{2}-\mathrm{ZrN} \equiv \mathrm{NZr}-\mathrm{N}_{2}$ is 87°. If the bridging N_{2} were to use its π^{*}-acceptor orbitals to interact, one with the filled a_{l} of one Zr , the other with the corresponding electron pair on the other Zr , one would expect a torsion angle of 90°.

Bonding with π-Donor and π-Acceptor Ligands and Conformational Barriers

π bonding of course can be either stabilizing, if the ligand carries low-lying acceptor orbitals, or destabilizing, if the ligand brings with it relatively high-lying donor orbitals. In $\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})_{2}$ complexes the a_{1} orbital is stabilized by interaction with the carbonyls, as was indicated by 12. In d^{2} $\mathrm{Cp}_{2} \mathrm{MX}_{2}$, where $\mathrm{X}=$ halogen, OR, SR, or NR_{2}, one would expect π antibonding with the X lone pairs, as shown below:

The effect should manifest itself in a lengthening of the MX bond as the a_{l} orbital is occupied. The trend has been noted by Prout and co-workers ${ }^{15}$ ($\mathrm{Mo}-\mathrm{Cl}$ is 2.39 in $\mathrm{Cp}_{2} \mathrm{MoCl}_{2}{ }^{+}$, d^{1}, vs. $2.47 \AA$ in $\mathrm{Cp}_{2} \mathrm{MoCl}_{2}, \mathrm{~d}^{2}$) and by Petersen and Dahl ${ }^{10 \mathrm{a}}$ ($\mathrm{Ti}-\mathrm{Cl}$ is 2.36 in $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{TiCl}_{2}, \mathrm{~d}^{0}$, vs. 2.40 in $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{VCl}_{2}$, d ${ }^{1}$). Petersen, Lichtenberger, Fenske, and Dahl ${ }^{10 b}$ have identified the π antibonding as responsible for this trend.

There is another consequence of π bonding and the specific shape of the nonbonding a_{1} orbital in these compounds. This is the predicted occurrence of conformational preferences and barriers to rotation around the $\mathrm{M}-\mathrm{L}$ bond in $C p_{2} \mathrm{MLL}^{\prime}$ compounds when L carries a "single-faced" π donor or acceptor system. Consider the extreme conformations of a model $\mathrm{Cp}_{2} \mathrm{M}\left(\mathrm{LR}_{2}\right) \mathrm{L}^{\prime}$ system, 13a and 13b. In 13a the ligand π-type orbital eclipses the a_{l} orbital; in $\mathbf{1 3 b}$ it is twisted 90° away from eclipsing. It is clear that for a d ${ }^{0}$ system, empty a_{1}, a donor L with its π orbital filled should choose $13 a$. For a d^{2} system, a_{1} filled, an acceptor L, its π orbital empty, should also prefer 13a, while a π donor L will

$13 a$

13b
try to avoid the four-electron destabilizing interaction with a_{1} by going to 13b.

Experimental information on this point is scarce. There is a crystal structure of $\mathrm{Cp}_{2} \mathrm{Mo}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{CH}_{3}{ }^{+}$, d^{2}, but the location of the hydroxide hydrogen is not available. ${ }^{15}$ Structures of $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{SPh})_{2}, \mathrm{~d}^{0}$, and $\mathrm{Cp}_{2} \mathrm{~V}(\mathrm{SPh})_{2}, \mathrm{~d}^{1}$, have been determined. ${ }^{10}$ The SPh^{-}ligand carries two lone pairs, but its π-donor character should be set by the higher energy one of these, the p type lone pair orthogonal to the MSPh plane. In both structures the geometry is such that the S-M-S$\mathrm{C}(\mathrm{Ph})$ dihedral angle is approximately 65°. Another interesting structure, related both to the conformational preferences discussed in this section and in the previous one for a bridging N_{2} complex, is that of $\left(\mathrm{Cp}_{2} \mathrm{NbCl}\right)_{2} \mathrm{O}^{2+}$. The dihedral angle between the two $\mathrm{Cl}-\mathrm{Nb}-\mathrm{O}$ planes is 72.5°, and has been interpreted by Prout and coworkers ${ }^{15}$ in π-bonding terms similar to those discussed here. In a crystal structure of $\mathrm{Cp}_{2} \mathrm{VBr}(\mathrm{TCNE})$, the TCNE molecule is σ bonded through a nitrogen and orients itself so that its better π-acceptor system conjugates with the formally occupied $1 \mathrm{a}_{1} .{ }^{19 \mathrm{c}}$ A d^{2} complex with a donor substituent, $\mathrm{Cp}_{2} \mathrm{VN}\left(\mathrm{SiMe}_{3}\right)_{2}$, has been synthesized, but its structure, is to our knowledge not available. ${ }^{19 \mathrm{~d}}$

A recent synthesis of a simple carbene complex $\mathrm{Cp}_{2} \mathrm{Ta}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$ is of considerable interest. ${ }^{20}$ The question arises whether the methylene prefers an orientation analogous to $13 a\left(\mathrm{~L}^{\prime}=\mathrm{CH}_{3}, \mathrm{~L}=\mathrm{C}\right.$) or $\mathbf{1 3 b}$. A carbene ligand is a two-electron donor and has one ideal acceptor orbital orthogonal to the MCH_{2} plane. The equilibrium conformation of these Ta (III) d^{2} complexes is set by the interaction of this carbene acceptor orbital with the filled nonbonding la a_{1} orbital of the $\mathrm{Cp}_{2} \mathrm{TaL}_{2}$ framework. Conformation 13a should be preferred, and this is observed in a crystallographic study. ${ }^{20 a}$ The experimental barrier to methylene rotation is too high to observe in an NMR experiment. ${ }^{20}$ In a model compound $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}{ }^{-}$we calculate a difference in energy of 1.2 eV between 13a and 13b. The importance of the carbene structure is that while in the other conformational equilibria referred to above the preferred geometry could have been set by the steric constraints of the system, in the carbene case the conformation which is electronically favored and experimentally found is the sterically less likely one.
$\mathrm{Cp}_{2} \mathrm{M}$ (dithiolene) complexes present another interesting conformational problem. Structures are available for several benzene-1,2-dithiolene, toluene-3,4-dithiolene, and eth-ylene-1,2-dithiolene complexes of Ti, Mo, and W. ${ }^{21}$ One interesting feature of these structures is the degree of folding around the SS axis, as shown in 14. The bending angle ω is

14

150

15b
less than 10° in the Mo and W complexes, but 46° in the two Ti compounds. In all molecules the SMS angle is $82-$ 83°, a value typical for d^{2} complexes. If the dithiolene ligand were viewed in its reduced form as $\mathrm{S}_{2} \mathrm{C}_{2} \mathrm{R}_{2}{ }^{2-}, 15 \mathrm{a}$, the
metal oxidation states would be formally $\mathrm{Ti}(\mathrm{IV}), \mathrm{d}^{0}$, and $\mathrm{Mo}(\mathrm{IV})$ or $\mathrm{W}(\mathrm{IV})$, d^{2}. If the dithiolene were neutral, $\mathbf{1 5 b}$, we would have $\mathrm{Ti}(\mathrm{II}), \mathrm{d}^{2}$, and $\mathrm{Mo}(\mathrm{II}), \mathrm{d}^{4}$.

The folding in the Ti complexes is easily understood from either extreme viewpoint. If one has the dithiolene as 15 a , i.e., $\mathrm{Ti}(\mathrm{IV})$, the acceptor a_{1} orbital will wish to interact with the donor orbital of the ligand. This is the HOMO of 15a, a π orbital of b_{1} symmetry if $\omega=0$. There can be no stabilizing interaction unless the dithiolene ligand folds. If we were to start from a $\mathrm{Ti}(\mathrm{II}), \mathrm{d}^{2}$, formulation with the dithiolene neutral as in $\mathbf{1 5 b}$, then the Cp_{2} Ti donor orbital would seek out an interaction with the same $\mathrm{S}_{2} \mathrm{C}_{2} \mathrm{R}_{2}$ orbital, now acting as an acceptor. Again an out-of-plane deformation of the dithiolene is required. One can equally well reason out why the dithiolene ligand is not folded much in the Mo or W complexes. For an anionic ligand, d^{2}, the acceptor orbital of the $\mathrm{Cp}_{2} \mathrm{Mo}$ fragment is b_{1} * (see the fragment orbitals in Figure 2). This is just the right symmetry to match the $\mathrm{S}_{2} \mathrm{C}_{2} \mathrm{R}_{2}{ }^{2-}$ donor orbital in $C_{2 c}$ symmetry.

Distortions of the $\mathbf{C p}_{2} \mathbf{M}$ Moiety

In the preceding discussion of σ and π bonding we have considered the $\mathrm{Cp}_{2} \mathrm{M}$ fragment as a rigid partner, presenting a certain set of orbitals for bonding. But of course any bonding situation is symbiotic; the electronic demands of the ligands in $\mathrm{Cp}_{2} \mathrm{ML}_{n}$ can change the geometry of the $\mathrm{Cp}_{2} \mathrm{M}$ fragment.

The CpMCp angle θ (see 3) is an obvious variable that can respond to the electronic nature of L . The analysis focuses on the change in energy and shape of the $\mathrm{Cp}_{2} \mathrm{M}$ fragment orbitals with θ. This was shown in Figure 2. Note that the b_{2} and $2 a_{1}$ orbitals both rise in energy with increasing bending, decreasing θ. Their hybridization also changes in such a way that they extend further away from the metal and toward the ligands with decreasing θ. This is especially pronounced for the $2 a_{1}$. Reasoning from the usual perturbation theoretic basis that an interaction between two orbitals is greater the greater the overlap and the smaller the energy gap between the two orbitals, we conclude that the better the π-acceptor character of L , the smaller the angle θ. The σ character of the ligand L is involved in interaction with the $2 a_{1}$. The overlap and energy gap criteria operate in opposite directions in this case. At lower θ there is more directionality in the $2 a_{1}$, but it is also further removed in energy from the level of an interacting ligand orbital. If it is the energy factor that dominates, then one would conclude that a ligand which is a better σ donor (i.e., has a more high-lying orbital) will favor a larger θ. That both good π acceptance and poor σ donation on the part of the ligand L would favor increased bending meshes with the reasoning cited in the introductory section that electron deficiency in $\mathrm{Cp}_{2} \mathrm{M}$ is associated with bending. Good σ and π donation by the ligands alleviates that electron donation and should increase θ.

The available structures ${ }^{22}$ cover a range of θ values from 148° in $\mathrm{Cp}_{2} \mathrm{MoD}_{2}$ to 126° in $\mathrm{Cp}_{2} \mathrm{ZrI}_{2}$, but unfortunately we do not see a clear sequence in σ donation or π acceptance that would allow us to test our predictions. Steric effects loom large in the determination of the equilibrium structures, as the extreme examples quoted above clearly indicate. Another geometrical distortion of the $\mathrm{Cp}_{2} \mathrm{M}$ fragment will be discussed in the next section.

Complexes with One π-Bonding Ligand and One σ-Bonding Ligand

There are several bent $\mathrm{Cp}_{2} \mathrm{M}$ complexes which have one π acceptor, such as CO as a ligand, and in addition one σ-bonding ligand. Examples are $\mathrm{Cp}_{2} \mathrm{Nb}(\mathrm{CO}) \mathrm{H}^{23}$ and $\mathrm{Cp}_{2} \mathrm{~V}(\mathrm{CO}) \mathrm{I} .{ }^{24}$ These complexes can only have C_{s} symme-

Figure 7. Interaction diagram for $\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO}) \mathrm{R}$ (left) and $\mathrm{Cp}_{2} \mathrm{M}(\mathrm{NO}) \mathrm{R}$ (right). The indicated orbital occupations correspond to $\mathrm{M}=\mathrm{V}$ or Nb (left) and $\mathrm{M}=\mathrm{Mo}$ (right).
try, but the bonding is similar to those cases already discussed. There will be two σ bonds, one with the purely σ-bonding ligand and one with the CO or other acceptor ligand, Figure 7, left. The CO in-plane a' π^{*} orbital stabilizes the remaining metal fragment a^{\prime} orbital. With only one orbital available we again expect complexes with two or fewer d electrons to form.

Similar to these CO compounds are some interesting nitrosyl complexes of molybdenum, $\mathrm{C}_{2} \mathrm{Mo}(\mathrm{NO}) \mathrm{R}(\mathrm{R}=$ alkyl). ${ }^{25,26}$ The molecular structures of two of these species have been determined. ${ }^{26}$ Each has a linear M-N-O bond and each has cyclopentadienyl ligands which are bonded to the metal atom in a grossly unsymmetrical manner. Those carbon atoms on the "back side" of the molecule away from the NO ligand are about $0.3 \AA$ further from the molybdenum atom than are the other ring carbons. This unsymmetric bonding to the $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$ligands is highly unusual, but can be readily explained.

If the normal rules for electron counting are followed, the complexes $\mathrm{Cp}_{2} \mathrm{Mo}(\mathrm{NO}) \mathrm{R}$ are 20 electron complexes. The interaction diagram shown in Figure 7, right, shows how this is possible. The bonding in the NO complex is quite similar to that in the CO complexes except for the fact that the π^{*} orbitals of the NO molecule occur at much lower energies. This means that the Mo-NO π bond is stronger, but more importantly there is now a low-lying occupied $\mathrm{a}^{\prime \prime}$ orbital. This orbital is a combination of the two highest lying valence orbitals of $\mathrm{Cp}_{2} \mathrm{M}$ and the nitrosyl π^{*}. In the discussion in the first section we noted that the two highest valence orbitals of the $\mathrm{Cp}_{2} \mathrm{M}$ fragment ($\mathrm{a}_{2}{ }^{*}$ and $\mathrm{b}_{1}{ }^{*}$, descended from $\mathrm{e}_{1 \mathrm{~g}}{ }^{*}$) were metal-cyclopentadienyl antibonding, and in the bent geometry mixed with still higher cyclopentadienyl orbitals. That mixing has the interesting effect that the bonding between the metal atoms and the rings is no longer symmetrical for these two orbitals. The two carbon atoms on the back side of the molecule, C_{3} and C_{4}, are antibonding with respect to the metal atom while $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{5} are nonbonding or bonding. A schematic representation of one of the orbitals under discussion, $\mathrm{b}_{1}{ }^{*}$, is shown below to illustrate its shape.

In the $\mathrm{Cp}_{2} \mathrm{Mo}(\mathrm{NO}) \mathrm{R}$ molecule we for the first time make use of the $\mathrm{a}_{2} *$ and $\mathrm{b}_{1} *$ orbitals. In the reduced C_{s} symmetry, both are $\mathrm{a}^{\prime \prime}$, and both mix with one nitrosyl π^{*} to give an occupied orbital. The equivalent partial occupation of $a_{2}{ }^{*}$ and $b_{1} *$ is responsible for the unsymmetrical $\mathrm{Cp}-\mathrm{M}$ bonding. It should be noted that the HOMO $a^{\prime \prime}$ is all on the NO and the Cp rings and has almost no metal contribution. The 18 -electron formalism can be restored by assigning the electrons to the formally NO^{+}ligand and making it a linear NO^{-}for the sake of our electron bookkeeping. Nevertheless, these molybdenum nitrosyl complexes are examples of molecules with excessive numbers of electrons which consequently have electrons in orbitals of at least partial antibonding character. The result is a highly unsymmetrical or distorted geometry.

We believe that a distortion similar to the one analyzed above may occur in the structure of the formally 20 -electron $\mathrm{Cp}_{2} \mathrm{~W}(\mathrm{CO})_{2}{ }^{19 \mathrm{a}}$ Indeed extended Hückel calculations by Brintzinger, Lohr, and Wong ${ }^{6 \mathrm{~b}}$ on $\mathrm{Cp}_{2} \mathrm{Mo}(\mathrm{CO})_{2}$ explicitly study this effect. Another way in which this complex can escape the occupation of a high-lying orbital is by the formation of a carbon-carbon bond between the two carbonyl groups. This would be essentially an oxidative coupling, a reaction type to be discussed below.

Olefin Complexes

Olefin bis(cyclopentadienyl) complexes are known for several of the early transition metals and have been postulated as intermediates in many important reactions. The simple ethylene complexes $\mathrm{Cp}_{2} \mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ (16) are known

for molybdenum and tungsten. ${ }^{19}$ c. 27 These complexes are somewhat similar to the "edge on" dinitrogen case we have previously discussed. The filled π orbital of ethylene can act as a donor orbital, interacting strongly with the fragment $2 a_{1}$ orbital. The empty olefin π^{*} orbital is of b_{2} symmetry and stabilizes the metal b_{2}. This back-bonding appears to be particularly good in this case since we have a relatively high-energy metal donor b_{2} orbital, hybridized toward the ligand and thus also having excellent overlap with the olefin π^{*} orbital. The remaining fragment orbital, the $1 \mathrm{a}_{l}$, remains essentially nonbonding. The Mo and W complexes are d^{4} with the two low-lying d 's, the b_{2} and la, filled.

These ethylene complexes have one nonbonding orbital, the $1 a_{1}$, and thus can be readily protonated to form the species $\mathrm{Cp}_{2} \mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}^{+}(\mathrm{M}=\mathrm{Mo}$ and W$) .{ }^{27}$ These complexes are analogous to the neutral niobium and tantalum hydrides, $\mathrm{Cp}_{2} \mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}(\mathrm{M}=\mathrm{Nb}$ and Ta$) .{ }^{23,27}$ The molecular structure of a similar ethyl complex $\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$ has been published. ${ }^{28}$ The symmetry in these complexes is at most C_{s}. All three of the key fragment orbitals are of a^{\prime} symmetry. The olefin and the hydride or alkyl donor orbitals will have bonding interactions with two of these a^{\prime} orbitals. The olefin π^{*} will stabilize the remaining a' orbital, the one which was $1 \mathrm{a}_{1}$ in $C_{2 v}$ symmetry, as shown in 17.

17
In the above analysis we have assumed that the ethylene molecule lies in the $y z$ plane. Guggenberger and co-workers 28 have pointed out, however, that there is no compelling steric reason forcing this planar geometry over an upright geometry. With the $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$ligands bent back there is adequate room for either isomeric arrangement. In the $\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$ structure the ethylene ligand does indeed lie exactly in the $y z$ plane. This preference for the planar geometry is also attested to by NMR studies which show the ethylene to be nonfluctional, while the $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$ligands are fluctional at room temperature.

An examination of the fragment orbitals shows an obvious electronic reason for the planar arrangement. The molecules have C_{s} symmetry in both the planar and upright geometries. The donating function of the ethylene is in both cases from the filled π orbital of a^{\prime} symmetry. The backbonding, metal to ligand, must be into the π^{*} orbital which would be a^{\prime} if the ethylene is planar, in the $y z$ plane, and $\mathrm{a}^{\prime \prime}$ if the ethylene were upright. The most available $\mathrm{Cp}_{2} \mathrm{M}$ donor orbital is of a' symmetry, giving the stabilizing interaction already shown in 17 . Donor orbitals of $a^{\prime \prime}$ symmetry are not so readily available, so that the in-plane positioning of the ethylene in $\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$ is favored.

A similar analysis can be made for the $C_{2 v} \mathrm{~d}^{4}$ complex $\mathrm{Cp}_{2} \mathrm{Mo}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$. A planar ethylene π^{*} would interact with the metal's filled b_{2} orbital, while an upright ethylene π^{*} would interact with an empty b_{1} orbital. Our calculations on the model complex $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)^{2-}$ show that the planar isomer is about 2.2 eV more stable than the upright isomer. The lower energy results primarily from the stabilization of the b_{2} orbital by the ethylene π^{*}. This point has also been noted by Green, Jackson, and Higginson. ${ }^{11}$ A substituted ethylene would of course have an additional steric reason for favoring the planar geometry.

Insertion Reactions of Coordinated Olefins

The Nb ethylene hydride complex is an unusual molecule in a number of respects. Very few compounds which have coordinated olefin ligands cis to a hydride ligand are stable. Indeed other similar complexes are known to insert the olefin into the hydride metal bond readily. Schwartz has developed extensively the "hydrozirconation" reaction which involves the reaction of $\mathrm{Cp}_{2} \mathrm{ZrClH}$ with olefins. ${ }^{29}$ Immediate olefin insertion occurs. The so-called "soluble" ZieglerNatta catalysts for olefin polymerization are based on alkyls of the $\mathrm{Cp}_{2} \mathrm{Ti}$ system. ${ }^{30}$ Colomer and Corriu have reported reactions which reduce and isomerize various olefins with $\mathrm{Cp}_{2} \mathrm{TiH}$ as the proposed intermediate. ${ }^{31}$

Why then are the Nb and similar d^{2} complexes such as $\mathrm{Cp}_{2} \mathrm{Mo}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}^{+}$relatively stable? The answer can be seen by considering the electronic structure of the $\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}$ and the supposed product of an insertion, which would be an ethyl complex, $\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$. The ethylene complex has been considered above, while the ethyl compound will be essentially similar to the monohydride case 4. A correlation of the various orbitals involved in the insertion reaction is shown in 18. The hydride and ethylene

18

ligands are pictured moving toward each other, forming a new C -H bond, while simultaneously the olefin-metal bond is converted to the new metal-alkyl bond and the metalhydride bond is broken. Throughout the reaction path C_{s} symmetry is maintained. This means that all the orbitals involved are of a' symmetry, and no level crossings occur.

The crucial dependence of the activation energy of the insertion reaction on the number of d electrons may be understood with the help of $\mathbf{1 8}$. With a d^{0} complex, a species such as $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{H}^{+}$, the two lowest levels in 18 would be occupied. The insertion would proceed rapidly, driven by the energy gain on transforming $\mathrm{Ti}-\mathrm{H}$ and $\mathrm{Ti}-\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ bonds into $\mathrm{Ti}-\mathrm{C}_{2} \mathrm{H}_{5}$ and $\mathrm{C}-\mathrm{H}$ bonds. This may be the mechanism of action of the "soluble" Ziegler-Natta catalysts. Some workers have hypothesized that the reactive intermediates are cationic alkyls, ${ }^{32} \mathrm{Cp}_{2} \mathrm{TiR}^{+}$, which are also d^{0} complexes. An olefin might coordinate to the Ti atom, insert into the alkyl bond forming a new d^{0} alkyl complex, then could coordinate another olefin which would also insert, and so forth, leading to an eventual polymer. Note in this connection our previous conclusions on the possible departure from $C_{2 v}$ symmetry of $\mathrm{d}^{0} \mathrm{Cp}_{2} \mathrm{ML}$ complexes. A motion of L to the side, coupled with the availability of acceptor orbitals in $\mathrm{Cp}_{2} \mathrm{ML}$, would facilitate the entrance of another ligand.

The d^{2} complexes are quite different, a consequence of the variation in energy of the one filled d orbital. In the olefin hydride complex this orbital, marked by the heavier line in 18, has been stabilized by the ethylene π^{*}, as illustrated earlier in 17. In the ethyl complex this orbital is somewhat destabilized by the alkyl σ bond formation. In model calculations this orbital is destabilized by some 1.2 eV , meaning
that insertion for a d^{2} complex would be about $50 \mathrm{kcal} / \mathrm{mol}$ less favorable than for a d^{0} case. The insertion can be forced in the d^{2} cases by adding an additional ligand which can coordinate to the ethyl complex, but there is certainly no evidence reported for a polymerization reaction.

In between these two extremes would be a d^{1} complex. The only direct experimental evidence on such a system is the study by Colomer and Corriu ${ }^{31}$ who find that a Ti (III) hydride, d^{1}, will partially reduce, but also isomerize, olefins. The isomerization of olefins implies that the insertion must be reversible, perhaps an indication that a d^{1} case is truly intermediate. We note here several other quantum mechanical calculations on possible models for Ziegler-Natta catalytic systems. ${ }^{33}$

The "hydrozirconation" reactions, exemplified by 19, involve the reactions of olefins with $\mathrm{Cp}_{2} \mathrm{ZrClH}$ to give insertion products. ${ }^{29}$ The coordination number is one greater

19
than in the previously discussed examples, but the essentials of the olefin insertion remain the same. The $\mathrm{Cp}_{2} \mathrm{ZrClH}$ molecule has one open coordination site to coordinate an olefin. It is a d^{0} complex, so there is no stability added to the olefin-metal bond due to donation into the empty π^{*} orbital. Upon coordination the olefin will be in close proximity to the hydride ligand, and thus the insertion can take place readily, driven again by the energy gained from forming the new $\mathbf{C}-\mathrm{H}$ bond.
A second possible intermediate for the polymerization reactions of the "soluble" Ziegler-Natta catalysts involves a $\mathrm{Ti}(\mathrm{IV})$ species similar to the Zr compound just discussed. The intermediate illustrated in the reaction sequence 20

contains an aluminum alkyl residue which results from the initial addition of an aluminum alkyl to $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{R}) \mathrm{Cl}, \mathrm{R}=$ alkyl. ${ }^{30}$ The key point in this mechanism is that the olefin can only react with a coordinatively unsaturated species. Thus the $\mathrm{Al}(\mathrm{Cl})_{2} \mathrm{R}_{2}-$ group must be monodentate when the olefin initially coordinates. This is important to realize because some of the intermediates previously hypothesized have been coordinately saturated, 18 -electron complexes. ${ }^{30}$ These catalysts are complicated and almost certainly the reactive intermediates are quite variable. We can say, however, that the best candidate for a polymerization catalyst of this type would be a coordinatively unsaturated d^{0} complex.

In addition to the olefin insertion reactions already discussed there is a second class of insertion reactions which is fundamentally different. The hydride $\mathrm{Cp}_{2} \mathrm{ReH}$ is an 18electron complex without any low-lying empty orbitals, as was illustrated in 4 . One would not expect this hydride to coordinate an additional electron-donating ligand. It has been observed, however, that the complex readily reacts with dimethylacetylene dicarboxylate to give the vinyl insertion product. ${ }^{34}$ Similar reactions are also known for $\mathrm{Cp}_{2} \mathrm{MoH}_{2}$, also an 18 -electron species, which reacts with a variety of olefins and acetylenes to give insertion products. ${ }^{35}$ The particular olefins and acetylenes which react have electron-accepting substituents.

These reactions may be rationalized by considering the olefin or acetylene ligands acting not as donors but as acceptors toward a donor $\mathrm{Cp}_{2} \mathrm{ML}_{n}$. The basicity of the bis(cyclopentadienyl) compounds is attested to by their chemical properties ${ }^{4}$ and the low magnitude of their first ionization potential $(6-6.5 \mathrm{eV}) .{ }^{11}$ The acceptor orbital of the olefin has a node between the carbons, so that the metal should interact asymmetrically, with one of the carbon atoms. The proposed mechanism, 21, involves the formation of a Lewis 21

acid-base complex with build-up of positive charge at the metal and negative charge at the uncomplexed carbon terminus. This facilitates a proton migration from the metal to the vinyl ligand, thus completing the so-called insertion reaction. Evidence for such a reaction mechanism has been found for the $\mathrm{Cp}_{2} \mathrm{MoH}_{2}$ system for which kinetic evidence indicates that Lewis acid-base adducts are formed. ${ }^{35}$

Carbonyl Insertion Reactions

As an extension of their hydrozirconation reaction, Schwartz and co-workers ${ }^{29}$ have observed that the $\mathrm{Zr}(\mathrm{IV})$ alkyl complexes which they prepared by olefin insertion reactions will readily react with CO to give CO insertion into

the metal alkyl bond. This formation of acyl derivatives from olefins and CO is similar to the reactions which take place in the cobalt hydroformylation process. Similar CO insertions have been observed for a number of $\mathrm{Ti}(\mathrm{IV})$ and $\mathrm{Zr}(\mathrm{IV})$ dialkyls also. ${ }^{36}$

These insertion reactions are easily understood. The dialkyl complexes are d^{0} with one low-lying empty orbital, the $1 \mathrm{a}_{1}$ in 7. The complex will thus readily react with a good σ donor with the direction of ligand attack expected to be along the y axis of the molecule. The resulting complex, also d^{C}, has three σ-bonding ligands. Significantly there is now no possibility for the normal π back-bonding into the $\mathrm{CO} \pi^{*}$ orbitals which one finds in nearly all known CO complexes. The angle between the alkyl group and the CO ligand is predicted to be less than 90°, meaning that there is substantial overlap between the CO π^{*} and the alkyl σ-donor orbital. The insertion or migration reaction should thus readily take place. In principle there is no symmetry restriction since all involved orbitals are of a' symmetry in the C_{s} point group. The resulting acyl compound is more stable than the CO complex because of the added energy due to the $\mathrm{C}-\mathrm{C}$ bond. There also seems to be a supplemental stabilization due to an interaction of the acyl oxygen with the one empty orbital on the metal. This is indicated by the

Figure 8. Interaction diagram for $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$. The orbitals are sketched in the $y z$ plane.
anomalous infrared stretching frequencies found for acyl derivatives, ${ }^{35}$ but has not been confirmed by structural studies.

Oxidative Coupling Reactions

When $\mathrm{Ti}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}$ is reacted with diphenylacetylene, an unusual "titanacyclopentadiene" complex is formed. ${ }^{37}$ A similar coupling step, $22 \boldsymbol{2 3}$, has been sug-

gested for an olefin analogue. ${ }^{38}$ These reactions fall in the general category of oxidative coupling reactions. Some very unusual reactions which occur when $\mathrm{Ti}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ is thermally decomposed are also thought to involve a coupling reaction. ${ }^{39}$

The coupling reaction can be reversible. McDermott and Whitesides prepared the "titanacyclopentane complex", 23, and found that the thermal decomposition of the compound yielded ethylene. ${ }^{38}$ In Figure 8 is shown an interaction diagram for $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$, which is a $\mathrm{Ti}(\mathrm{II}) \mathrm{d}^{2}$ complex. The primary metal acceptor orbitals are the b_{2} and the $2 a_{1}$ while the remaining orbital, the $1 a_{1}$, is ideally situated for a backbonding interaction with one combination of the π^{*} orbitals of the ethylene ligands. The molecular orbital scheme for the coupled product of the reaction, 23, is similar to that for the dihydride case discussed earlier in 7. A correlation diagram for the elementary step of the oxidative coupling, 22 $\rightarrow \mathbf{2 3}$, is shown in Figure 9. The reaction is symmetry allowed, ${ }^{40}$ proceeding from a $\mathrm{d}^{2} \mathrm{Ti}$ (II) complex to a $\mathrm{d}^{0} \mathrm{Ti}(\mathrm{IV})$ complex with simultaneous formation of the new CC bond. It appears from the qualitative features of the orbital scheme that the metallocycle should indeed be more stable.

Figure 9. Correlation diagram for the oxidative coupling of two ethylenes coordinated to $\mathrm{Cp}_{2} \mathrm{Ti}$.

Note that the reversal of the coupling reaction for an analogue of 23 with two more electrons, for instance a d^{2} Mo complex, would not be expected since it would lead to a 20 electron species with occupied antibonding orbitals.

It is perhaps appropriate here to discuss the carbene analogy which has played a certain role in discussions of the reactivity of $\mathrm{Cp}_{2} \mathrm{M}$ fragments. The analogy was first made by Volpin and co-workers ${ }^{37 \mathrm{a}}$ for $\mathrm{Cp}_{2} \mathrm{Ti}$ and was made explicit by the calculations of Brintzinger and Bartell. ${ }^{6}$ In the broad sense that a carbene is characterized by at least one high-lying filled orbital and at least one low-lying unfilled orbital the assignment of carbenoid character to $\mathrm{Cp}_{2} \mathrm{Ti}$ is certainly correct. But perhaps the analogy is more direct for the d^{4} system $\mathrm{Cp}_{2} \mathrm{Mo}$, as illustrated by the following considerations.

Let us construct a correlation diagram for an analogue of a typical carbene reaction, insertion into a σ bond. This reaction is of course an oxidative addition. More specifically we consider the least motion $C_{2 v}$ interaction of $\mathrm{Cp}_{2} \mathrm{M}$ and H_{2}, obtaining the interaction diagram 24 shown below.

For $\mathrm{M}=\mathrm{Ti}$, low spin, the reaction is a forbidden one. Of course, if the driving force for a reaction exists, and the least-motion pathway is symmetry forbidden, then one must not doubt that the reaction partners will find a way, albeit nonleast motion, to carry through the reaction. This is what

Figure 10. Interaction diagram for $C_{3 v} \mathrm{Cp}_{3} \mathrm{Ti}^{+}$
happens in the case of methylene, ${ }^{41 a}$ and was noted for $\mathrm{Cp}_{2} \mathrm{Ti}$ by Brintzinger and Bartell. ${ }^{6}$

For $\mathrm{M}=\mathrm{Mo}$ or W , with $1 \mathrm{a}_{1}$ and b_{2} filled in the $\mathrm{Cp}_{2} \mathrm{M}$ fragment, the least-motion cycloaddition is symmetry allowed. The carbene analogy for $\mathrm{Cp}_{2} \mathrm{Mo}$ and $\mathrm{Cp}_{2} \mathrm{~W}$ was carefully delineated by Thomas, ${ }^{18 \mathrm{c}}$ who reported the specific addition to H_{2}. Green and co-workers have found that the photolysis of $\mathrm{Cp}_{2} \mathrm{WH}_{2}$ leads to insertion of $\mathrm{Cp}_{2} \mathrm{~W}$ into the $\mathrm{C}-\mathrm{H}$ bond of benzene and the methyl CH bond of p-xylene and mesitylene. ${ }^{42}$ While neither of these studies directly established the intermediacy of $\mathrm{Cp}_{2} \mathrm{Mo}$ or $\mathrm{Cp}_{2} \mathrm{~W}$, the indirect evidence for these fragments and their subsequent insertion into σ bonds is good. It may be worth noting that a bent $\mathrm{Cp}_{2} \mathrm{Mo}$ is not like an ordinary carbene, but that its HOMO $\left(b_{2}\right)$ is a p - or π-type orbital and its LUMO ($2 a_{1}$) is a σ-type orbital. This makes it more like a p^{2} carbene, ${ }^{4 \mathrm{lb}} \mathbf{2 5}$, a fairly unusual type in methylene chemistry.

25
For a much more detailed analysis of $\mathrm{Cp}_{2} \mathrm{M}$ insertion reactions, including a proper accounting of the spin factors omitted by us, the reader is referred to the elegant study of Brintzinger, Lohr, and Wong. ${ }^{6 b}$

Allyl and Tetrahydroborate Complexes

There are several examples of bis(cyclopentadienyl) π-allyl complexes including $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)$, ${ }^{43 \mathrm{a}}$ a d^{\prime} complex, and

26

27
$\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right){ }^{43 \mathrm{~b}}$ a d^{2} complex. The orbitals of the allyl anion are well-known, appearing at right in the interaction diagram shown below. The complexes have C_{s} symmetry. The lowest filled allyl orbital overlaps well with the higher a^{\prime} fragment orbital, forming a σ-bonding interaction. The $a^{\prime \prime}$ ligand orbital donates well into the fragment $a^{\prime \prime}$. The

lower fragment a^{\prime} orbital and the empty allyl antibonding π orbital are of the same symmetry and have the same nodal surface, meaning there can be significant back-bonding from the metal to the allyl ligand. A similar interaction diagram has been given by Green, Jackson, and Higginson, who assigned the photoelectron spectrum of $\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) .{ }^{1 /}$
Analogous to the π-allyl species are complexes of the tetrahydroborate anion, $\mathrm{Cp}_{2} \mathrm{TiBH}_{4}$ and $\mathrm{Cp}_{2} \mathrm{NbBH}_{4}, 27 .{ }^{44 \mathrm{a}}$ The symmetry of these compounds is $C_{2 v}$. The $\mathrm{BH}_{4}{ }^{-}$ligand has two donor orbitals, a_{1} and b_{2} in symmetry, which are similar to the two donor orbitals of the allyl ligand. ${ }^{45}$ An interesting compound of as yet unknown structure is $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{BH}_{4}\right)_{2} .{ }^{44 \mathrm{~b}}$ Were the borohydrides arranged as in 28a, then one of the four donor orbitals of the two $\mathrm{BH}_{4}{ }^{-}$,

the b_{2} combination shown in $\mathbf{2 8 b}$, would not have the proper pseudosymmetry to interact with the $\mathrm{Cp}_{2} \mathrm{Zr}$ fragment. This MO is antibonding between the two borohydrides, a factor which should count against this conformation. Alternatives are 28c and 28d. In model calculations the former suffers from close steric contacts with the Cp rings. The latter is of lower energy, but there is no precedent for monodentate $\mathrm{BH}_{4}{ }^{-}$coordination. We do not consider the calculations overly reliable because of the steric complications and the fact that a complete potential energy surface was not explored. A structure determination would be of great interest.

The Triscyclopentadienyl Complexes

The preceding discussions have covered the bis(cyclopentadienyl)metal fragment and its complexes in considerable detail. Before concluding we wish to briefly discuss a tris(cyclopentadienyl)(transition metal) fragment. The triscyclopentadienyls are quite common for the lanthanides and actinides, for which many complexes of the types $\mathrm{Cp}_{3} \mathrm{M}$ (29), $\mathrm{Cp}_{3} \mathrm{MX}$ (30), and $\mathrm{Cp}_{3} \mathrm{MB}$ (31) ($\mathrm{X}=$ halogen, $\mathrm{B}=$ base) are known. ${ }^{46}$ There appear to be a few examples within the transition metal series, including reported yttrium complexes ${ }^{47}$ and perhaps $\mathrm{Cp}_{4} \mathrm{Zr}$.

Table II. Extended Hückel Parameters

Orbital	$H_{i i}, \mathrm{eV}$	ζ^{a}
H ls	-13.60	1.300
C 2 s	-21.40	1.625
C 2 p	-11.40	1.625
Ti 4 s	-8.97	1.075
Ti 4 p	-5.44	0.675
Ti 3 d	-10.81	$4.550(0.4206)$,
		$1.40(0.7839)$

${ }^{a}$ Slater exponent. For the Ti 3 d function two are given, followed in parentheses by the coefficient in the expansion of that orbital.

29

30

31

The structure of $\mathrm{Zr}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}$ has been reported by Kulishov et al., ${ }^{48}$ who conclude that there are three $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$ ligands and one $\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}^{-}$ligand. Some doubt has been raised concerning the correctness of this structure. ${ }^{49}$ The molecules $\mathrm{Cp}_{4} \mathrm{M}$ ($\mathrm{M}=\mathrm{Ti}, \mathrm{Zr}$ or Hf) are all known to be fluctional with all four rings equivalent on an NMR time scale. ${ }^{50,51}$ The structure of the Ti complex shows that it has two $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}^{-}$ligands and two $\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}-$ ligands in the crystalline state. ${ }^{49}$ Although the authors of the fluctional studies do not propose it, a viable intermediate for the interchange of the ligands would be a molecule with three $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ rings.

The geometry of a hypothetical $\mathrm{Cp}_{3} \mathrm{Ti}^{+}$fragment is shown in Figure 10 which also shows a molecular orbital scheme for the $\mathrm{C}_{3 v}$ fragment. Three $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$ligands can potentially donate six electrons each for a total of 18 electrons in all. It happens, however, that one of the donor orbitals resulting from the $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$ligands is of a_{2} symmetry. Since there is no a_{2} metal orbital in the $C_{3 v}$ point group, this molecular orbital cannot serve as a donor orbital. ${ }^{52,53}$ Thus the three ligands donate 16 electrons to the metal leaving one orbital on the metal fragment empty. The lone remaining orbital is of a_{1} symmetry and is mainly d_{2} with only a little p_{z} and s character ($63 \% \mathrm{~d}_{z} 2,3 \% \mathrm{~s}, 0.7 \% \mathrm{p}_{z}$). With one available metal orbital d^{2} complexes of the type $\mathrm{Cp}_{3} \mathrm{M}$ are theoretically possible. In the complexes $\mathrm{Cp}_{3} \mathrm{MR}$ and $\mathrm{Cp}_{3} \mathrm{MB}$ this one lone a_{1} orbital will be used to form the σ bond to the alkyl group or the base. ${ }^{54}$ It should be noted that there are no high-lying filled orbitals suitable for π back-bonding into π-acceptor ligand orbitals. Thus complexes such as $\mathrm{Cp}_{3} \mathrm{MCO}$ would not be stable.

The bulk of the $\mathrm{Cp}_{3} \mathrm{M}$ complexes are within the lanthanide and actinide series. ${ }^{46}$ These metals have f orbitals, and there is an f orbital of the required a a_{2} symmetry in C_{30}. ${ }^{53,55}$ It is not possible to assess the importance of ligand donation into the forbitals, but at least this one symmetry restriction is removed. The scarcity of $\mathrm{Cp}_{3} \mathrm{M}$ complexes within the transition metal series may be due to steric considerations and the relatively poor overlaps between the appropriate orbitals. The lanthanides and actinides have larger radii, which may alleviate the steric problems, and in addition possess f orbitals.

Acknowledgment. Conversations with L. J. Guggenberger and F. N. Tebbe formed the stimulus to the initiation of our studies. We are most grateful to L. F. Dahl, R. Bau, and J. E. Bercaw for kindly supplying us with information prior to publication, and to R. Weber for the drawings. Our research was generously supported by the National Science

Foundation and by the Advanced Research Projects Agency through the Materials Science Center at Cornell University.

Appendix

The calculations were of the extended Hückel type. ${ }^{56}$ A charge iterative calculation was carried out on $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}$ in the geometry shown in $3: \mathrm{Ti}-\mathrm{C}, 2.32 \AA ; \mathrm{C}-\mathrm{C}, 1.39 \AA, \mathrm{C}-\mathrm{H}$, $1.1 \AA ; \theta=$ angle between normals to rings $=136^{\circ}$. The basis set used for Ti consisted of single Slater orbitals for the 4 s and 4 p functions, and a 3 d function taken as a contracted linear combination of two Slater-type functions. The various exponents were taken from the work of Richardson et al. ${ }^{57}$ A quadratic charge dependence was assumed for the $H_{i i}$ of titanium. ${ }^{58}$ The $H_{i i}$ for carbon and hydrogen were kept fixed. The orbital parameters along with the final self-consistent $H_{i i}$ values are summarized in Table II. All other calculations in the paper used these parameters.

References and Notes

(1) As a leading reference see P. C. Wailes, R. S. P. Coutts, and H. Weigold, "Organometallic Chemistry of Titanium, Zirconium and Hafnium", Academic Press, New York, N.Y., 1974.
(2) Molecular orbital calculations for metallocenes are reviewed by M. F. Rettig, 'N.M.R. of Paramagnetic Molecules, Principles and Applications'", G. N. LaMar, W. DeW. Horrocks, Jr., and R. H. Holm, Ed., Academic Press, New York, N.Y., 1973, pp 217-242.
(3) The stability is thermodynamic as well as kinetic. See V. I. Telnoy, K. V. Kiryanov, V. I. Ermolayev, and I. B. Rabinovich, Dokl. Akad. Nauk SSSR, 220, 1088 (1975).
(4) For a summary of the chemistry of the metallocenes see M. L. H. Green, "Organometallic Compounds", Vol. 2, 3rd ed, Methuen and Co. Ltd., London, 1968, pp 90-164.
(5) An elegant discussion of the bonding and Jahn-Teller distortions in d^{5} and d^{7} metallocenes is given by J.H. Ammeter, N. Oswald, and R. Bucher, Helv. Chim. Acta, 58, 671 (1975).
(6) (a) H. H. Brintzinger and L. S. Bartell, J. Am. Chem. Soc., 92, 1105 (1970); (b) H. H. Brintzinger, L. L. Lohr, Jr., and K. L. T. Wong, ibid., 97, 5146 (1975).
(7) C. Ballhausen and J. P. Dahl, Acta Chem. Scand., 15, 1333 (1961).
(8) N. W. Alcock, J. Chem. Soc. A, 2001 (1967).
(9) J. C. Green, M. L. H. Green, and C. K. Prout, Chem. Commun., 421 (1972): M. L. H. Green, Pure Appl. Chem., 30, 373 (1972).
(10) (a) J. L. Petersen and L. F. Dahl, J. Am. Chem. Soc., 96, 2248 (1974); ibid., 97, 6416,6422 (1975). (b) J. L. Petersen, D. L. Lichtenberger, R. F. Fenske, and L. F. Dahl, ibid., 97, 6433 (1975).
(11) J. C. Green, S. E. Jackson, and B. Higginson, J. Chem. Soc., Dalton Trans., 403 (1975).
(12) M. Dubeck and R. A. Schell, Inorg. Chem., 3, 1757 (1964).
(13) F. W. Siegert and H. J. de Liefde Meijer, J. Organomet. Chem., 15, 131 (1968).
(14) J. H. Teuben and H. J. de Liefde Meijer, J. Organomet. Chem., 46, 313 (1972); T. Chivers and E. D. Ibrahim, J. Organomet. Chem., 77, 241 (1974).
(15) K. Prout, T. S. Cameron, R. A. Forder, S. R. Critchley, B. Denton, and G. V. Rees, Acta Crystallogr., Sect. B, 30, 2290 (1974). Several structures have also been studied by the Bernal group: A. Clearfield, D. K. Warner, C. H. Saldarriaga-Molina, R. Ropal, and 1. Bernal, Can. J. Chem., 53, 1622 (1975); C. H. Saldarriaga-Molina, A. Clearfield, and I. Bernal, J. Organomet. Chem., 80, 79, (1974); Inorg. Chem., 13, 2880 (1974); E. F. Epstein and I. Bernal, Inorg. Chim. Acta, 7, 211 (1973); J. Oganomet. Chem., 26, 229 (1971): B. R. Davis and I. Bernal, ibid., 30, 75 (1971).
(16) R. Bau, University of Southern California, private communication.
(17) (a) J. C. W. Chien, J. Phys. Chem., 67, 2477 (1963); see also J. C. W. Chien and C. R. Boss, J. Am. Chem. Soc., 83, 3767 (1961); (b) D. P. Bakalik and R. G. Hayes, Inorg. Chem., 11, 1734 (1972); (c) C. P. Stewart and A. L. Porte, J. Chem. Soc., Dalton Trans., 722 (1973).
(18) (a) J. E. Bercaw, E. Rosenberg, and J. D. Roberts, J. Am. Chem. Soc., 96, 612 (1974); and J. E. Bercaw, ibid., 96, 5087 (1974), have discussed the possible occurrence of such a structure, but it appears that an alternative dimeric coordination mode is chosen: (b) J. E. Bercaw, California Institute of Technology, private communication; (c) see also J. L. Thomas, J. Am. Chem. Soc., 95, 1838 (1973); J. E. Bercaw and H. H. Brintzinger, lbid., 93, 2045 (1971); R. H. Marvich and H. H. Brintzinger, ibid., 93, 2046 (1971); J. E. Bercaw, R. H. Marvich, L. G. Bell, and H. H. Brintzinger, ibid., 94, 1219 (1972); (d) E. E. van Tamelen, Acc. Chem. Res., 3, 361 (1970); E. E. van Tamelen, W. Cretney, N. Klaentschi, and J. S. Miller, J. Chem. Soc., Chem. Commun., 481 (1972); (e) an unusual structure with "edge on" N_{2} coordination has been found: C . Krüger and Y.-H. Tsay, Angew. Chem., 85, 1051 (1973).
(19) (a) The recent crystal structure of J. L. Atwood, K. E. Stone, H. G. Alt, D. C. Hrncir, and M. D. Rausch, J. Organomet. Chem., 96, C4 (1975), finds the C-Ti-C angle in this molecule to be 87.9°, while our calculation gives 89°; (b) K. L. T. Wong and H. H. Brintzinger, J. Am. Chem. Soc., 97, 5143 (1975); (c) M. F. Rettig and R. M. Wing, Inorg. Chem., 8, 2685 (1969). We are grateful to a referee for bringing this work to our attention; (d) G. A. Razuvaev, V. N. Latyaeva, E. N. Gladyshev, A. N. Li-
neva, and E. V. Krasilnikova, Dokl. Akad. Nauk SSSR, 223, 1144 (1975).
(20) (a) R. R. Schrock, Du Pont, prlvate communication. (b) A $\mathrm{Cp}_{2} \mathrm{~W}\left(\mathrm{CH}_{2}\right) \mathrm{H}^{+}$ specles has been postulated as a reaction intermediate: N. J. Cooper and M. L. H. Green, J. Chem. Soc., Chem. Commun., 761 (1974).
(21) (a) H. Köpf, Z. Naturforsch., B, 23, 1531 (1968); A. Kutoglu and H. Köpf, J. Organomet. Chem., 25, 455 (1970); A. Kutoglu, Z. Anorg. Allg. Chem., 390, 195 (1972); T. Debaerdemaeker and A. Kutoglu, Acta Crystallogr., Sect. B, 29, 2664 (1973); A. Kutoglu, lbid., 29, 2891 (1973); (b) J. R. Knox and C. K. Prout, ibid., 25, 2013 (1969); Chem. Commun., 1277 (1967).
(22) See the compilatlons of structural information in ref 15 and in L. J. Guggenberger, Inorg. Chem., 12, 294 (1973).
(23) F. N. Tebbe and G. W. Parshall, J. Am. Chem. Soc., 93, 3793 (1971); N. I. Kirillova, A. I. Gusev, and Yu. T. Struchkov, Zh. Strukt. Khim., 13, 473 (1972).
(24) F. Calderazzo, G. Fachinetti, and C. Floriani, J. Am. Chem. Soc., 96, 3695 (1974).
(25) R. B. King, Inorg. Chem., 7, 90 (1968).
(26) F. A. Cotton and P. Legzdins, J. Am. Chem. Soc., 90, 6232 (1968); J. L. Calderon, F. A. Cotton, and P. Legzdins, ibid., 91,2528 (1969); F. A. Cotton and G. A. Rusholme, ibid., 94, 402 (1972).
(27) F. W. S. Benfield and M. L. H. Green, J. Chem. Soc., Datton Trans., 1324 (1974).
(28) L. J. Guggenberger, P. Meakin, and F. N. Tebbe, J. Am. Chem. Soc., 96, 5420 (1974).
(29) D. W. Hart and J. Schwartz, J. Am. Chem. Soc., 96, 8115 (1974); C. A. Bartelo and J. Schwartz, ibid., 97, 228 (1975); D. W. Hart, T. F. Blackburn, and J. Schwartz, ibid., 97, 679 (1975).
(30) G. Henrici-Olivé and S. Olivé, Angew. Chem., 83, 121 (1971); Angew. Chem., Int. Ed. Engl., 10, 105 (1971).
(31) E. Colomer and R. Corriu, J. Organomet. Chem., 82, 367 (1974)
(32) F. S. Dyachkowskii, A. K. Shilova, and A. E. Shilov, J. Polym. Sci., Part C, 16, 2336 (1967).
(33) (a) D. R. Armstrong, P. G. Perkins, and J. J. P. Stewart, J. Chem, Soc., Dalton Trans., 1972 (1972); (b) I. V. Borisov, V. L. Lebedev, A. A. Bagaturyantz, T. V. Fokina, A. M. Taber, and I. V. Kalechitz, Zh. Fiz. Khim., 48, 2328 (1974); (c) P. Cossee, P. Ros, and B. Schachtschneider, Proc. Int. Congr. Catal., 4th, 1, 287 (1970).
(34) M. Dubeck and R. A. Schell, Inorg. Chem., 3, 1757 (1964).
(35) A. Nakamura and S. Otsuka, J. Am. Chem. Soc., 95, 5091, 7262 (1973).
(36) (a) G. Fachinetti and C. Floriani, J. Organomet. Chem., 71, C5 (1974). (b) P. C. Wailes, H. Weigold, and A. P. Bell, cited in ref 1, p 242.
(37) (a) M. E. Volpin, V. A. Dubovitskii, O. V. Nogina, and D. N. Kursanov, Dokl. Akad. Nauk. SSSR, 151, 1100 (1963); (b) K. Sonogashira and N. Hagihara, Bull. Chem. Soc. Jpn., 39, 1178 (1966); (c) G. Fachinetti and C. Floriani, J. Chem. Soc., Chem. Commun., 66 (1974).
(38) J. X. McDermott and G. M. Whitesides, J. Am. Chem. Soc., 86, 947 (1974).
(39) V. B. Shur, E. G. Berkovitch, L. B. Vasiljeva, R. V. Kudryavtsev, and M. E. Volpin, J. Organomet. Chem., 78, 127 (1974); C. P. Boekel, J. H. Teubel, and H. J. de Lietde Meijer, ibid., 81, 371 (1974).
(40) R. B. Woodward and R. Hoffmann, Angew. Chem., 81, 797 (1969), and references therein. See also R. G. Pearson, Fortschr. Chem. Forsch., 41, 75 (1973).
(41) (a) R. Hoffmann, J. Am. Chem. Soc., 90, 1475 (1968); R. Hoffmann, D. M. Hayes, and P. S. Skell, J. Phys. Chem., 76, 664 (1972); (b) R. Hoftmann, G. D. Zeiss, and G. W. Van Dine, J. Am. Chem. Soc., 90, 1485 (1968); R. Gleiter and R. Hoffmann, ibid., 90, 5457 (1968),
(42) C. Giannotti and M. L. H. Green, J. Chem. Soc., Chem. Commun., 1114 (1972); K. Elmitt, M. L. H. Green, R. A. Forder, I. Jefferson, and K. Prout, lbid., 747 (1974).
(43) (a) R. B. Helmholdt, F. Jellinek, H. A. Martin, and A. Vos, Recl. Trav. Chim. Pays-Bas., 86, 1263 (1967); (b) F. W. Siegert and H. J. de Liefde Meijer, J. Organomet. Chem., 23, 177 (1970).
(44) (a) K. M. Melmed, D. Coucouvanis, and S. J. Lippard, Inorg. Chem., 12, 232 (1973); N. I. Kirlllova, A. I. Gusev, and Y. T. Struchkov, Zh. Strukt. Khim., 15, 718 (1974); (b) R. K. Nanda and M. G. H. Wallbridge, Inorg. Chem., 3, 1798 (1964); T. J. Marks, W. J. Kennelly, J. R. Kolb, and L. A. Shimp, lbid., 11, 2540 (1972); T. J. Marks and J. R. Kolb, J. Am. Chem. Soc., 97, 3397 (1975).
(45) The bondling capabilities of a borohydride ligand have been explored by R. Weber and R. Hoffmann, unpublished work.
(46) For a review of lanthanide and actinide organometallic complexes see B. Kanellakopulos and K. W. Bagnall, MTP Int. Rev. Sci.: Inorg. Chem., Ser. One, 7, 299-322 (1972). See also J. Leong, K. O. Hodgson, and K. N. Raymond, Inorg. Chem., 12, 1329 (1973); J. L. Atwood, C. F. Hains, Jr., M. Tsutsui, and A. E. Gebala, J. Chem. Soc., Chem. Commun., 452 (1973); G. W. Halstead, E. C. Baker, and K. N. Raymond, J. Am. Chem. Soc., 97, 3049 (1975); T. J. Marks, A. M. Seyam, and J. R. Kolb, ibid., 95, 5529 (1973).
(47) E. O. Fisher and H. Fisher, J. Organomet. Chem., 6, 141 (1966).
(48) V. I. Kulishov, E. M. Brainina, N. G. Bokij, and Y. T. Struchkov, Chem. Commun., 475 (1970); V. I. Kulishov, N. G. Bokii, and Y. T. Struchkov, Zh. Strukt. Khim., 11, 700 (1970).
(49) J. L. Calderon, F. A. Cotton, B. G. DeBoer, and J. Takats, J. Am. Chem. Soc., 93, 3592 (1971).
(50) J. L. Calderon, F. A. Cotton, and J. Takats, J. Am. Chem. Soc., 93, 3587 (1971).
(51) M. K. Minacheva, E. M. Brainina, and R. K. Freidlina, Dokl. Akad. Nauk. SSSR, 173, 581 (1967); E. M. Brainina and G. G. Dvoryantseva, lzv. Akad. Nauk. SSSR, Ser. Khim., 442 (1967).
(52) For other examples of symmetry restricted donation see: (a) D. A. Bochvar, N. P. Gambaryan, E. M. Brainina, and R. K. Freidlina, Dokl. Akad. Nauk SSSR, 183, 1324 (1968); (b) A. Davison and S. S. Wreford, Inorg. Chem., 14, 703 (1975); (c) D. P. Tate, J. M. Augl, W. M. Ritchey, B. L. Ross, and J. G. Grasselli, J. Am. Chem. Soc., 86, 3261 (1964); R. M. Laine, R. E. Moriarty, and R. Bau, ibid. 94, 1402 (1972); R. B. King, Inorg. Chem., 7, 1044 (1968).
(53) The role of the a_{2} orbital is also discussed by R. Pappalardo and C. K. Jorgensen, J. Chem. Phys., 46, 632 (1967).
(54) This point has been noted by R. D. Fischer, Angew. Chem., 77, 1019 (1965).
(55) For a discussion of forbitals see H. G. Friedman, Jr., G. R. Choppin, and D. G. Feuenbacher, J. Chem. Educ., 41, 354 (1964); C. Becker, ibid., 41, 358 (1964).
(56) R. Hoffmann, J. Chem. Phys., 39, 1397 (1963); R. Hoffmann and W. N. Lipscomb, ibid., 36, 2179,3489 (1962); 37, 2872 (1962).
(57) J. W. Richardson, W. C. Nieuwpoort, R. R. Powell, and W. E. Edgell, J. Chem. Phys., 36, 1057 (1962).
(58) H. Basch, A. Viste, and H. B. Gray. Theor. Chim. Acta, 3, 458 (1965).

